SCHNÖGL

FEDERPENDEL & FADENPENDEL

᠕	W	W	L

13/	7.			egriffe ei	
	Setze d	ie passe	nden Be	egriffe ei	า

Setze die passenden Begriffe ein: Komponente – auslenkende Kraft - rücktreibende Kraft - Spiralfeder – Federkonstanten - Masse – Gravitationskraft - Federkraft - Masse - Schnur - zum Erdmittelpunkt						
Schwingungen entstehen dann, wenn eine einen Körper aus der						
Gleichgewichtslage bewegt und eine den Körper wieder in						
die Ruhelage zurückholt.						
Federpendel						
-	aus einer	an die eine				
angehängt ist. Die rücktreibende Kraft ist in diesem Fall die						
Diese hängt von der k ab.						
Die Schwingungsdauer der Federpendels berechnet man nach der Formel:						
	T	(Einheit:)				
	m	(Einheit:)				
	k	(Einheit:)				
Fadenpendel	aug oiner	an die eine				
·						
		r F _g erzeugt.				
Die Gravitationskraft F _g ist jedoch						
rücktreibende Kraft beim Fadenpendel ist die in Schwingungsrichtung s wirkende						
	F _s dei Giavitations	кгап.				
Die Schwingungsdauer der Fadenpendels berechnet man nach der Formel:						
	T	(Einheit:)				
	1	(Einheit:)				
	g	(Einheit:)				

PETER SCHNÖGL SEITE 1 VON 2

Versuch zum Federpendel

Material

Spiralfeder, Massestücke 10 g und 50 g mit Halterung, Stativmaterial, Stoppuhr

Aufgabenstellung

Messung der Schwingungsdauer T(m) eines Federpendels in Abhängigkeit von der angehängten Masse. Vergleich der Messwerte mit den theoretisch berechneten Werten.

- 1. Miss die Schwingungsdauern T dieses Federpendels mit angehängten Massen von 10 g bis 100 g (in 10 g Schritten).
- 2. Stelle die Schwingungsdauer T in Abhängigkeit von der Masse m dar!

Zeichne dazu in ein Masse-Schwingungsdauer-Diagramm deine Messwerte ein. Zeichne in einer anderen Farbe die aus der Formel für die Schwingungsdauer berechneten Werte ein. (Masse auf der x-Achse, Schwingungsdauer auf der y-Achse).

- 3. Woher kommt der Unterschied der beiden Kurven?
- 4. Kann man die Form der zu erwartenden Messkurve vorhersagen? Welcher Typ von Funktion ist zu erwarten?
- 5. Ermittle die mathematische Funktion T(m) deiner Messwerte durch Regression. Gib auch eine Abschätzung der Übereinstimmung durch den Korrelationskoeffizienten ran.
- 6. Welche Schwingungsdauer besitzt ein Pendel mit einer Masse von 75 g?
- 7. Wie groß ist die Masse dieses Federpendels bei einer Schwingungsdauer von 0,95 s?

VERSUCH ZUM FADENPENDEL

Material

Faden (I = 1,3 m), Massestück 50 g, Stativmaterial, Stoppuhr

Aufgabenstellung

Messung der Schwingungsdauer T(I) eines Fadenpendels in Abhängigkeit von der Länge des Pendels. Vergleich der Messwerte mit den theoretisch berechneten Werten.

- 1. Miss die Schwingungsdauern T dieses Fadenpendels mit Pendellängen von 20 cm bis 110 cm (in 10 cm Schritten).
- 2. Stelle die Schwingungsdauer T in Abhängigkeit von der Pendellänge I dar! Zeichne dazu in ein Pendellänge-Schwingungsdauer-Diagramm deine Messwerte ein. Zeichne in einer anderen Farbe die aus der Formel für die Schwingungsdauer berechneten Werte ein. (Pendellänge auf der x-Achse, Schwingungsdauer auf der y-Achse).
- 3. Woher kommt der Unterschied der beiden Kurven?
- 4. Kann man die Form der zu erwartenden Messkurve vorhersagen? Welcher Typ von Funktion ist zu erwarten?
- 5. Ermittle die mathematische Funktion T(I) durch Regression. Gib auch eine Abschätzung der Übereinstimmung durch den Korrelationskoeffizienten ran.
- 6. Welche Schwingungsdauer besitzt ein Pendel mit 75 cm Länge?
- 7. Wie lange ist dieses Fadenpendel bei einer Schwingungsdauer von 1,5 s?

PETER SCHNÖGL SEITE 2 VON 2

