

SCHWINGUNG

Interferenz Eigenfrequenz Resonanz

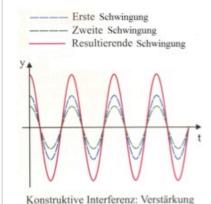
Interferenz

Als Interferenz bezeichnet man auch

Dabei können sich einzelne Schwingungen zu einer _____

überlagern.

Unabhängigkeitsprinzip:	
Überlagern sich	Einzelschwingungen
so	


Konstruktive Interferenz

Die Teilschwingungen überlagern sich zu einer ______.

- Tritt bei _____ Teilschwingungen auf.
- Gangunterschied
 _____ mit n ∈ {0, 1, 2, ...}
- Beispiel:

$$f_1(t) =$$

$$f_2(t) =$$

Erste Schwingung Zweite Schwingung Resultierende Schwingung

Destruktive Interferenz: Abschwächung

Destruktive Interferenz

Die Teilschwingungen überlagern sich zu

einer ______.

- Tritt bei _____ _ _ Teilschwingungen auf.
- Gangunterschied

_____ mit n∈{1, 2, 3, ...}

Beispiel:

$$f_1(t) = _____$$

$$f_2(t) = _____$$

Eigenfrequenz

ist die Frequenz, mit der	als
ist die Frequenz, mit der	das System nach
Die Eigenfrequenz eines	schwingfähigen Systems

Experimente:

schwingen kann.

- Bestimme die Eigenfrequenz eines Weinglases f₀ = ...
- Bestimmung der Eigenfrequenzen von Pfeifen.

Resonanz

Resonanzfall	Resonanzfal	ı
--------------	-------------	---

Ein _____ wird mit seiner ____ angeregt.

Resonanzkatastrophe

Durch _____ wird ein System so stark zum Schwingen angeregt, dass wird.

http://www.youtube.com/watch?v=3mclp9QmCGs